Sounding of finite solid bodies by way of topological derivative
نویسندگان
چکیده
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Sounding of finite solid bodies by way of topological derivative Marc Bonnet, B. B. Guzina
منابع مشابه
Topological Derivative-based Topology Optimization of Structures Subject to Multiple Load-cases
The topological derivative measures the sensitivity of a shape functional with respect to an infinitesimal singular domain perturbation, such as the insertion of holes, inclusions or source-terms. The topological derivative has been successfully applied in obtaining the optimal topology for a large class of physics and engineering problems. In this paper the topological derivative is applied in...
متن کاملShelling Hexahedral Complexes for Mesh Generation
We present a new approach for the generation of hexahedral finite element meshes for solid bodies in computer-aided design. The key idea is to use a purely combinatorial method, namely a shelling process, to decompose a topological ball with a prescribed surface mesh into combinatorial cubes, so-called hexahedra. The shelling corresponds to a series of graph transformations on the surface mesh ...
متن کاملFinite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy
The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...
متن کاملA New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...
متن کاملOn a modication of the Chebyshev collocation method for solving fractional diffiusion equation
In this article a modification of the Chebyshev collocation method is applied to the solution of space fractional differential equations.The fractional derivative is considered in the Caputo sense.The finite difference scheme and Chebyshev collocation method are used .The numerical results obtained by this way have been compared with other methods.The results show the reliability and efficiency...
متن کامل